Evaluating the Integral of sin3 x · 1/2 cos x · cos x2 over [0, π]
In this article, we will walk through the detailed steps to evaluate the following integral:
( I int_{0}^{pi} sin^3 x cdot frac{1}{2} cos x cos x^2 , dx )
Step 1: Expansion of the Integrand
The integrand in the given integral is ( frac{1}{2} cos x cos x^2 ). We start by expanding this expression:
( 1 - cos x^2 1 - frac{1 cos 2x}{2} frac{1 - cos 2x}{2} )
Using the product-to-sum identities, we get:
( frac{1}{2} cos x (1 - cos x^2) frac{1}{2} cos x left( frac{1 - cos 2x}{2} right) frac{1}{4} cos x - frac{1}{4} cos x cos 2x )
Next, expanding ( cos x cos 2x ) using product-to-sum identities:
( cos x cos 2x frac{1}{2} (cos 3x cos x) )
Thus, the expression becomes:
( frac{1}{4} cos x - frac{1}{4} left( frac{1}{2} (cos 3x cos x) right) frac{1}{4} cos x - frac{1}{8} cos 3x - frac{1}{8} cos x frac{1}{8} cos x - frac{1}{8} cos 3x )
Step 2: Substitution Back into the Integral
Substituting the expanded form back into the original integral:
( I int_{0}^{pi} sin^3 x left( frac{1}{8} cos x - frac{1}{8} cos 3x right) dx )
We split this into two separate integrals:
( I frac{1}{8} int_{0}^{pi} sin^3 x cos x , dx - frac{1}{8} int_{0}^{pi} sin^3 x cos 3x , dx )
Step 3: Evaluating Each Integral
First Integral:
( int_{0}^{pi} sin^3 x cos x , dx )
We use the substitution ( u sin x ), ( du cos x , dx ). The limits change from ( 0 ) to ( pi ) to ( 0 ) to ( 0 ), which makes the integral evaluate to zero.
Second Integral:
( int_{0}^{pi} sin^3 x cos 3x , dx )
Using the product-to-sum identities, we get:
( sin^3 x frac{3 sin x - sin 3x}{4} )
Then the integral becomes:
( int_{0}^{pi} left( frac{3 sin x - sin 3x}{4} right) cos 3x , dx frac{1}{4} int_{0}^{pi} (3 sin x cos 3x - sin 3x cos 3x) , dx )
This simplifies to:
( frac{1}{4} int_{0}^{pi} 3 sin x cos 3x , dx - frac{1}{4} int_{0}^{pi} sin^2 3x , dx )
The first integral evaluates to zero due to symmetry, and the second integral evaluates to ( frac{pi}{6} ).
Combining Results:
( I 0 - frac{1}{8} cdot frac{pi}{6} -frac{pi}{48} )
Conclusion
The final value of the integral is:
( I -frac{pi}{48} )
By carefully expanding the integrand, applying substitution, and simplifying using trigonometric identities, we have successfully evaluated the given integral.