Evaluating Integrals Using Substitution Techniques

Evaluating Integrals Using Substitution Techniques

In this article, we will walk through the process of evaluating an integral using substitution techniques. Specifically, we will examine the integral:

I ∫24 (x2 - x) / √(2x 1) dx

Step 1: Substitution Method

To simplify this integral, we will use a substitution. Let:

u 2x 1

Then, we differentiate u with respect to x:

du/dx 2 implies dx du / 2

Step 2: Changing the Limits of Integration

Next, we need to change the limits of integration:

When x 2, u 2(2) 1 5 When x 4, u 2(4) 1 9

Step 3: Expressing x in Terms of u

We express x in terms of u:

x (u - 1) / 2

Step 4: Substituting into the Integral

Now, we substitute x into the given expression:

(x2 - x) ((u - 1)2 / 4) - ((u - 1) / 2)

Simplifying, we get:

(u2 - 1) / 4

Substituting everything into the integral, we have:

I ∫59 ((u2 - 1) / 4) / √u * (du / 2)

Which simplifies to:

I 1/8 ∫59 (u2 - 1) / √u du

Step 5: Splitting the Integral

Now, we split the integral:

I 1/8 ( ∫59 u3/2 du - ∫59 u-1/2 du)

Step 6: Calculating Each Integral Separately

For ∫ u3/2 du: Integral: u5/2 / (5/2) 2/5 u5/2 Evaluating from 5 to 9: 2/5 (95/2 - 55/2) Calculating: 2/5 (243 - 25√5) For ∫ u-1/2 du: Integral: 2u1/2 Evaluating from 5 to 9: 2 (3 - √5)

Step 7: Substituting Back into the Expression for I

Combining the terms gives:

I 1/8 ( 2/5 (243 - 25√5) - 2 (3 - √5) )

Further simplifying and finding a common denominator 5:

I 1/8 ( (486 - 50√5 - 30 10√5) / 5 ) 1/8 ( (456 - 40√5) / 5 ) (456 - 40√5) / 40 (114 - 10√5) / 10

Final Result

The final result for the integral is:

I (114 - 10√5) / 40

Alternative Substitution Approach

Alternatively, we can use the substitution: 2x 1 t2.

This implies:

dx t dt and 2x 1 t2 implies 4x2 - 4x - 1 t4 implies x2 - x (t4 - 1) / 4

When x 2, t √5 When x 4, t 3

Thus, the integral becomes:

I ∫√53 (t4-1 / 4) / t * t dt 1/4 ∫√53 (t4 - 1) dt

After evaluating, we have:

I 1/4 ( (t5/5) - t )√53 1/4 ( (35/5) - 3 - ( (5√5)/5 ) √5 1/4 ( 228/5 - 4√5) 57/5 - √5

This approach also leads to the same result:

boxed{I 57/5 - √5}